ar X iv : n lin / 0 40 70 12 v 1 [ nl in . C D ] 7 J ul 2 00 4 The morphology of nodal lines – random waves vs

نویسندگان

  • G Foltin
  • S Gnutzmann
  • U Smilansky
چکیده

We study the distribution of shapes of nodal lines that appear in solutions of the Helmholtz wave equation. For this purpose, we define the density associated with a given shape of a nodal line, and consider its expectation value for Gaussian random fields. We compute the densities of some particular lines, and show that the densities obtained agree well with the predictions of a theory which assumes that the nodal structure of random wave fields can be described in terms of a short-range percolation model. However, we identify closely related quantities, which allow for a clear distinction between the random wave case and a short range ensemble.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : n lin / 0 40 70 12 v 2 [ nl in . C D ] 1 2 N ov 2 00 4 The morphology of nodal lines – random waves versus percolation

In this paper we investigate the properties of nodal structures in random wave fields, and in particular we scrutinize their recently proposed connection with short-range percolation models. We propose a measure which shows the difference between monochromatic random waves, which are characterized by long-range correlations, and Gaussian fields with short-range correlations, which are naturally...

متن کامل

ar X iv : n lin / 0 30 50 20 v 1 [ nl in . C D ] 1 2 M ay 2 00 3 Nodal domains on quantum graphs 8 February 2008

We consider the real eigenfunctions of the Schrödinger operator on graphs, and count their nodal domains. The number of nodal domains fluctuates within an interval whose size equals the number of bonds B. For well connected graphs, with incommensurate bond lengths, the distribution of the number of nodal domains in the interval mentioned above approaches a Gaussian distribution in the limit whe...

متن کامل

ar X iv : 0 70 7 . 03 46 v 1 [ m at h - ph ] 3 J ul 2 00 7 THE ONE - DIMENSIONAL SCHRÖDINGER - NEWTON EQUATIONS

We prove an existence and uniqueness result for ground states of one-dimensional Schrödinger-Newton equations.

متن کامل

ar X iv : 0 80 7 . 12 85 v 1 [ nl in . A O ] 8 J ul 2 00 8 Collective Phase Sensitivity

Yoji Kawamura, Hiroya Nakao, Kensuke Arai, Hiroshi Kori, and Yoshiki Kuramoto The Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606-8502, Japan Abteilung Physikalische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004